If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-3Y^2+18Y-23
We move all terms to the left:
-(-3Y^2+18Y-23)=0
We get rid of parentheses
3Y^2-18Y+23=0
a = 3; b = -18; c = +23;
Δ = b2-4ac
Δ = -182-4·3·23
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{3}}{2*3}=\frac{18-4\sqrt{3}}{6} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{3}}{2*3}=\frac{18+4\sqrt{3}}{6} $
| 5x+8=4x+3+x | | 3/4n+7=4 | | 13=z/4 | | 42+(x-4)+2x=180 | | 55m+m=005-70 | | Y=-3x^2+17x-23 | | 11x-4x+128=11x+48 | | 13.17x+0.11=13.67x-0.12 | | 5t=5t | | 5x+(3x-21)+(5x-46)=180 | | 57+(2x-37)+2x=180 | | 57+(2x+37)+2x=180 | | 84+x×1=8x | | 2(x+5)=6x-5 | | -11=-3+k | | 70+(2x+15)+77=180 | | 19x-5+90=180 | | |325-5x|=35 | | 12.83x+0.09=13.58x-0.14 | | 19x-5+90°=180 | | 34x+(2x+4)+2x=180 | | 26x-4=15x-5+78 | | 5x-6+4=23 | | 5x+6+2x=24 | | n=14–n16 | | 3x+(x+12)+(x+20)=180 | | 11x+(x+29)+(6x-29)=180 | | 0.11k1.5=2.49 | | 56+(35x-16)+(23x-34)=180 | | 13+x-7=19 | | 12.83+0.09x=13.58-0.14x | | x^2+2x-7=8x |